$\left.$| | \quad NRSD Curriculum - Algebra 1 |
| :--- | :--- |
| NUMBER AND QUANTITY | |\quad| PARCC |
| :--- |
| Priority | \right\rvert\, | Additonal |
| :--- |
| The Real Number System |
| Extend the properties of exponents to rational exponents. |

ALGEBRA	
Arithmetic with Polynomials and Rational Functions	Major cluster
Perform arithmetic operations on polynomials	Fluency
9-12.A.APR.1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	Major cluster
Creating Equations*	
Create equations that describe numbers or relationships	
9-12.A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential function.	
9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.*	
9-12.A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.	
Reasoning with Equations and Inequalities	

9-12.A.REI. 11 Explain why the x-coordinates of the points where the graphs of the

 equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, absolute value, exponential9-12.A.REI. 12 Represent and solve equations and inequalities graphically. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding halfplanes.

Functions	
Interpreting Functions	
Understand the concept of a function and use function notation	Major cluster
9-12.F.IF. 1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.	
9-12.F.IF. 2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	
9-12.F.IF. 3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=f(1)=1, f(n+1)=f(n)+f(n-1)$ for $n>=1$.	
Interpret functions that arise in applications in terms of the context	Major cluster
9-12.F.IF. 4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals, where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries, end behavior;	
9-12.F.IF. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $\mathrm{h}(\mathrm{n})$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*	
9-12.F.IF. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*	
Analyze functions using different representations	Supporting cluster
9-12.F.IF. 7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*	
9-12.F.IF.7a Graph linear and quadratic functions and show intercepts, maxima, and minima.*	
9-12.F.IF.7b Graph piecewise-defined functions, including step functions and absolute value functions.*	
9-12.F.IF.7e Graph exponential functions showing intercepts	

9-12.F.IF. 8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.

9-12.F.IF.8a Use the process of factoring and completing the square in a quadratic function to
show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

9-12.F.IF.8b Use the properties of exponents to interpret expressions for exponential functions.

For example, identify percent rate of change in functions such as $y=1.02 t, y=$ (0.97)t,
$y=(1.01) 12 t, y=(1.2) t / 10$, and classify them as representing exponential growth and decay.

MA.9-12.F.IF.8c Translate between different representations of functions and relations: graphs,
equations, point sets, and tables.
9-12.F.IF. 9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
MA.9/12.F.IF. 10 Given algebraic, numeric, and/or graphical representations of functions, identify the function as polynomial, rational, logarithmic, exponential, or trigonometric.

Building Functions	
Build a functions that models a relationship between two quantities	Supporting cluster
9-12.F.BF. 1 Write a function that describes a relationship between two quantities.* 9-12.F.BF.1a Determine an explicit expression, a recursive process, or steps for calculation from a context.	
9-12.F.BF.1b Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.	
9-12.F.BF. 2 Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.*MA 2011 Footnote: In Algebra I, identify linear and exponential sequences that are defined recursively, continue the study of sequences in Algebra II.	
Build new functions from existing functions	Additonal cluster
9-12.F.BF. . Identify the effect on the linear, quadratic, and exponential graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	
9-12.F.BF. 4 Find inverse functions.	
9-12.F.BF.4a Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2(x 3)$ or $f(x)=$ $(x+1) /(x-1)$ for $x \neq 1$.	
Linear, Quadratic, and Exponential Models	
Construct and compare linear, quadratic, and exponential models and solve problems	Supporting cluster
9-12.F.LE. 1 Distinguish between situations that can be modeled with linear functions and with exponential functions.*	
9-12.F.LE.1a Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.*	

| 9-12.F.LE.1b Recognize situations in which one quantity changes at a constant rate |
| :--- | :--- |
| per unit interval relative to another.* |
| 9-12.F.LE.1c Recognize situations in which a quantity grows or decays by a |
| constant percent rate per unit interval relative to another.* |\quad| 9-12.F.LE.2 Construct linear and exponential functions, including arithmetic and
 geometric sequences, given a graph, a description of a relationship, or two input-
 output pairs (include reading these from a table).* |
| :--- |
| 9-12.F.LE.3 Observe using graphs and tables that a quantity increasing
 exponentially eventually exceeds a quantity increasing linearly, quadratically, or
 (more generally) as a polynomial function.* |
| Interpret expressions for functions in terms of the situation they model |
| 9-12.F.LE.5 Interpret the parameters in a linear or exponential function in terms of a
 context.
 *(Use word problems to model linear, reciprocal, quadratic, or exponential
 functions.) |

Statistics and Probability	
Interpreting Categorical and Quantitative Data	
Summarize, represent, and interpret data on a single count or measurement variable	Additonal cluster
9-12.S.ID. 1 Represent data with plots on the real number line (dot plots, histograms, and box plots).*	
9-12.S.ID. 2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.*	
9-12.S.ID. 3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).*	
9-12.S.ID. 4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.*	
Summarize, represent, and interpret data on two categorical and quantitative variables	Supporting cluster
9-12.S.ID. 5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends	
9-12.S.ID. 6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.*	
9-12.S.ID.6a Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.*	
9-12.S.ID.6b Informally assess the fit of a function by plotting and analyzing residuals.*	
9-12.S.ID.6c Fit a linear function for a scatter plot that suggests a linear association.*	
Interpret linear models	Major cluster
9-12.S.ID. 7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.*	
9-12.S.ID. 8 Compute (using technology) and interpret the correlation coefficient of a linear fit.*	
9-12.S.ID. 9 Interpret linear models. Distinguish between correlation and causation.*	

9-12.G.GPE. 5 Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).
8.F. 3 Interpret the equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $\mathbf{A}=\mathbf{s 2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.

